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This experiment was set up to compare experimental data with different analytical methods
of finding deformations of a bent beam. Three methods were used to determine the deformations
at different loads, which included Euler-Bernoulli Beam Bending equations, Finite Element
Analysis, and SolidWorks simulations. Comparing data revealed that the beam under analysis
had undergone hysteresis and had a non-loaded deformation of .7 cm. Adjusted data then
revealed that Euler-Bernoulli and FEA break down at large deformations. Thus, SolidWorks
had the best model of the deformations.

I. Nomenclature

𝜎 = stress
𝑀𝑥 or 𝑢” = moment in the x direction
𝑀𝑦 or 𝑣” = moment in the y direction
𝐼𝑥𝑥 = second moment of area with respect to the x-axis
𝐼𝑦𝑦 = second moment of area with respect to the y-axis
𝐼𝑥𝑦 = product of inertia
𝑤𝑦 = distributed load in the y direction
𝑤𝑥 = distributed load in the x direction
𝑆𝑦 = force in the y direction
𝑆𝑥 = force in the x direction
𝑧 = direction parallel to the length of the beam
𝑢′ = angle of beam in the x direction
𝑣′ = angle of beam in the y direction
𝑢 = displacement in the x direction
𝑣 = displacement in the y direction
𝐶 = constant of integration
®𝐹 = force vector
𝐾𝑠 = stiffness matrix
®𝑞 = displacement and angle vector
𝑤𝑁 = displacement
\𝑁 = angle

II. Introduction

This experiment was conducted with the purpose of testing the accuracy of beam-bending principles and simulation
methods when compared to experimental data.
The Aerospace Structures course several different methods of predicting deformation of a beam that is subjected

to an external force. The first method covered was in relation to Euler-Bernoulli beam theory. This theory considers
direct stress at a point and models a deflection relationship by considering loading, load placement, and geometry of the
beam. Euler-Bernoulli assumes that plane sections perpendicular to the mid-plane remain plane and perpendicular to
the beam axis after deformation. It also assumes that the object under analysis is a long, slender beam. The second
method covered was Finite Element Analysis (FEA). This method breaks a beam up into an N number of sections for
analysis. This theory considers energy methods, both strain energy and external work, to model displacement and angle
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of a beam’s Nth element. The third method of data collection in this experiment was the SolidWorks computer software.
SolidWorks uses FEA methods to simulate the behavior of objects and assemblies, considering loads applied.

With three varying methods of collecting deflection data, this experiment was set up to analyze the difference in data
collected from the theories compared to experimental data. This will reveal the accuracy of the three beam-bending
theories.

III. Objectives
The objectives of this experiment were:
• Determine the deflection of a beam under loading using an experimental set-up
• Determine the deflection of the same beam under corresponding loading using the Euler-Bernoulli beam bending

method
• Determine the deflection of the same beam under corresponding loading using Finite Element Analysis
• Determine the deflection of the same beam under corresponding loading using SolidWorks’ Simulation Software
• Analyze the differences in data between the four methods of collection
• Determine the accuracy of the data and assumptions of each method

IV. Experimental Set Up
This experiment used the following materials:
• A Mayes 30 cm ruler, model number 10761, stainless steel
• A clamp
• A meter-length ruler (meter stick)
• A table
• A plastic cup
• String
• 85 quarters
• Duct Tape
• Scale

Fig. 1 Experimental Setup
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The 30 cm ruler was used as the beam under analysis. This ruler was manufactured to have a hole drilled into the
rounded end. About 3 cm of the opposite end of the ruler, the side with a flat edge, was laid onto a table and clamped
down. This created a 30.3 cm length between the edge of the camp to the hole. The meter stick was then placed near the
free end of the 30cm ruler, such that the hole’s location could be easily measured by the meter stick. The meter stick
was placed in such a manner that it and the 30 cm ruler almost touched, to ensure good data collection.

The height of the 30 cm ruler’s free end was recorded in cm using the digit it was nearest to on the meter stick. This
would be the starting deflection, initialized as 0 in later calculations.

The plastic cup was then measured on a scale and the weight was recorded in grams. Holes were then drilled into
two opposing sides of the plastic cup, near the top. String was then looped through these holes and through the hole of
the ruler. The string was then tied. Duct tape was placed onto all three holes to ensure their stability. The added weight
caused deflection to the ruler, so the height of the 30 cm ruler was recorded again.

The 85 quarters were then split up into 17 piles, with 5 quarters each. One quarter was placed on the scale and the
weight was recorded.

One pile of 5 quarters was added to the cup and the height of the 30 cm ruler’s end was recorded. Another 5 quarters
was added, and the height was recorded again. This repeated until the cup held 85 quarters.

The data was then inserted into Excel. The weight of the quarters were converted into Newtons. The deflection of
the beam was then calculated, using the first height recording as 0.

V. Modeling

Euler-Bernoulli Methods
Euler-Bernoulli Methods consider direct stress at a point and models a deflection relationship due to pure bending.

Euler-Bernoulli also assumes that plane sections perpendicular to the mid-plane remain plane and perpendicular to the
beam axis after deformation. It also assumes that the object under analysis is a long, slender beam.

The direct stress of a beam in pure bending can be calculated using

𝜎 =
𝑀𝑦 𝐼𝑥𝑥 − 𝑀𝑥 𝐼𝑥𝑦

𝐼𝑥𝑥 𝐼𝑦𝑦 − 𝐼2𝑥𝑦
𝑥 +

𝑀𝑥 𝐼𝑦𝑦 − 𝑀𝑦 𝐼𝑥𝑦

𝐼𝑥𝑥 𝐼𝑦𝑦 − 𝐼2𝑥𝑦
𝑥 (1)

A relationship between distributed loads, point loads, and moments can also be made through

𝑤𝑦 =
−𝜕𝑆𝑦
𝜕𝑧

=
−𝜕2𝑀𝑥

𝜕𝑧2
(2)

and

𝑤𝑥 =
−𝜕𝑆𝑥
𝜕𝑧

=
−𝜕2𝑀𝑦

𝜕𝑧2
(3)

Thus, a relationship can be made that(
𝑢”
𝑣”

)
=

−1
𝐸 (𝐼𝑥𝑥 𝐼𝑦𝑦 − 𝐼2𝑥𝑦)

[
−𝐼𝑥𝑦 𝐼𝑥𝑥

𝐼𝑦𝑦 −𝐼𝑥𝑦

] (
𝑀𝑥

𝑀𝑦

)
(4)

The equations for the secondary moment of areas for a symmetric, square cross-section are

𝐼𝑥𝑥 =
𝑏ℎ3

12
(5)

𝐼𝑦𝑦 =
ℎ𝑏3

12
(6)

𝐼𝑥𝑦 = 0 (7)
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Fig. 2 Cross Section

As per figure 2, the beam has a rectangular cross-section with a width of 2.6 cm and a height of .1 cm. Thus, the
secondary moment of areas are calculated to be

𝐼𝑥𝑥 =
(2.6) (.1)3

12
= .000126667 𝑐𝑚4 (8)

𝐼𝑦𝑦 =
(.1) (2.)3

12
= .14646667 𝑐𝑚4 (9)

The maximum deformation of the beam under analysis occurred at the maximum loading. Maximum loading for
the experiment was a collective weight of the plastic cup and 85 quarters, which comes to 4.8118 Newtons (N) in the
negative y direction. At 4.8118 N, using equation 2, the corresponding moment is

−𝜕 (4.8118)
𝜕𝑧

=
−𝜕2𝑀𝑥

𝜕𝑧2
(10)

− 4.8118 =
−𝜕𝑀𝑥

𝜕𝑧
(11)

𝑀𝑥 = −4.8118𝑧 + 𝐶 (12)

and with the boundary condition of

𝑀𝑥 (30.3) = 0 (13)

the equation of the moment becomes

𝑀𝑥 (30.3) = 0 = −4.8118(30.3) + 𝐶 (14)

𝐶 = 4.8118(30.3) (15)

𝑀𝑥 = −4.8118(𝑧 − 30.3) (16)

Because no forces were present in the x direction, the moment in the y direction is

𝑀𝑦 = 0 (17)

Thus, using equations 2, 4, 5, and 6, the deformations can be calculated using the reduced equation(
𝑢”
𝑣”

)
=

−1
𝐸 (𝐼𝑥𝑥 𝐼𝑦𝑦

[
0 𝐼𝑥𝑥

𝐼𝑦𝑦 0

] (
𝑀𝑥

0

)
(18)

which reduces to

𝑣” =
−1
𝐸𝐼𝑥𝑥

𝑀𝑥 =
4.8118
𝐸𝐼𝑥𝑥

(𝑧 − 30.3) (19)

Since v" corresponds with the moment, then v’ is slope and v is displacement. To find displacement, two derivatives
must be taken:

𝑣” =
4.8118
𝐸𝐼𝑥𝑥

(𝑧 − 30.3) (20)
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𝑣′ =
4.8118
𝐸𝐼𝑥𝑥

( 𝑧
2

2
− 30.3𝑧) + 𝐶1 (21)

𝑣 =
4.8118
𝐸𝐼𝑥𝑥

( 𝑧
3

3
− 30.3𝑧2

2
) + 𝐶1𝑧 + 𝐶2 (22)

But with the boundary conditions

𝑣(0) = 0 (23)

𝑣′(0) = 0 (24)

then

𝐶1 = 0 (25)

𝐶2 = 0 (26)

Thus,

𝑣 =
4.8118
𝐸𝐼𝑥𝑥

( 𝑧
3

3
− 30.3𝑧2

2
) (27)

With the material properties of

𝐼𝑥𝑥 = .00021667 𝑐𝑚4 (28)

𝐸 = 19, 000, 000
𝑁

𝑐𝑚2 (29)

then the displacement at the end of the beam at maximum load is

𝑣 =
4.8118 𝑁

19, 000, 000 𝑁

𝑐𝑚2 ∗ .00021667 𝑐𝑚4
( (30.3)3

3
− 30.3(30.3)2

2
) 𝑐𝑚3 (30)

= −10.8383 𝑐𝑚 (31)

Excel was used to calculate the displacement at each loading point to plot the displacement versus force applied.

Finite Element Analysis
Finite Element Analysis (FEA) breaks a beam up into an N number of sections for analysis. This theory considers

energy methods, both strain energy and external work, to model displacement and angle of a beam’s Nth element. This
method allows for a more variety of models, which can include springs, rollers, and torsional springs.

FEA uses an N number of elements to determine angle and displacement of the beam. It does this by assigning an
element a displacement and angle at each end of an element of length l.

The equation to find the angles and deformation is

®𝐹 = [𝐾𝑠] ®𝑞 (32)

Where F is the force vector, K is the stiffness vector, and q is the displacement/angle vector.
When under beam bending, with the force in the y direction, the stiffness matrix of each element is

𝐾𝑠 =
2𝐸𝐼𝑥𝑥
𝑙3


6 −3𝑙 −6 −31
−3𝑙 2𝑙2 3𝑙 𝑙2

−6 3𝑙 6 3𝑙
−3𝑙 𝑙2 3𝑙 2𝑙2


(33)

The experimental beam’s dimensions matrix, using two elements, is
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𝑤1

\1

𝑤2

\2

𝑤3

\3

(34)

Thus, the beam’s stiffness matrix is

𝐾𝑠 =



14.2066 −107.147 −14.2066 −107.6147 0 0
−107.6147 1086.9 107.6147 543.4544 0 0
−14.2066 107.6147 28.4131 0 −14.2066 −107.6147
−107.6147 543.4544 0 2173.8 107.6147 543.4544

0 0 −14.2066 107.6147 14.2066 107.6147
0 0 −107.6147 543.4544 107.6147 1086.9


(35)

with a corresponding force vector of

𝐹 =



0
0
0
0

−4.8118
0


(36)

Thus, using the boundary conditions

𝑤1 = 0 (37)

\1 = 0 (38)

Solving for q gets



𝑤2

\2

𝑤3

\3


=



28.4131 0 −14.2066 −107.6147
0 2173.8 107.6147 543.4544

−14.2066 107.6147 14.2066 107.6147
−107.6147 543.4544 107.6147 1086.9



−1 

0
0

−4.8118
0


(39)

And with 𝑤3 being the deformation at the end of the beam, then the deformation is

𝑤3 = (2.25247957249302) (−4.8118) = 10.8385 𝑐𝑚 (40)

MATLAB was used to calculate displacement per load and to calculate displacement at maximum load per number
of elements used. The code was manipulated such that it would run FEA through a loop that calculated displacements
for an N number of elements, where N was 1 through 10. The final displacement at max load was consistently 10.8385
cm, so it can be assumed that the displacement per number of elements converged right away. Thus, three elements
were used to run the FEA numbers, out of personal preference, since the number of elements used did not have an effect
on the data.
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SolidWorks

Fig. 3 SolidWorks Simulation at Maximum Loading

SolidWorks uses FEA methods to simulate the behavior of objects and assemblies, considering loads applied.
The beam under analysis was recreated in SolidWorks using exact dimensions. A simulation was set up, under the

Simulations tab, to recreate the boundary conditions and the forces.
The ruler used in the experiment was a discontinued product, so information about the type of material it is made of

is limited. However, the ruler has "stainless steel" written on it. In addition, SolidWorks does not have an exact material
type for stainless steel.

Thus, AISI 304 Steel was used for the SolidWorks simulation. The material properties of 304 are very similar to
stainless steel. In addition, Young’s Modulus is the only material property used in both Euler-Bernoulli and in FEA.
Since 304 and stainless steel have the same Young’s Modulus, it can be assumed that using 304 in the simulation will
not deem large differences in results.

A fixed boundary condition was applied to one end of the beam using the Fixtures tab. A point load was applied to
the opposite end using the External Loads tab.

The simulation was then run. Displacement of the entire beam can be visualized under the Displacement tab, but
only the displacement at the loaded end was recorded. In the simulation, this displacement is visualized as the deepest
red color.
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VI. Results

Fig. 4 Force vs Displacement for the Four Methods

The predicted displacement for each added load for each of the three analytical methods are consistent and close to
the experimental results, as seen in Figure 4. The experimental displacement tends to be slightly larger than all of the
analytical displacements throughout the added loads, but merges near the final load, which can be further confirmed in
Table 1.

Table 1 Percent Difference Between Experimental and Analytical Results

One possible explanation for this phenomenon is hysteresis. This phenomenon is the explanation as to why material
properties change over time [1]. The ruler used for the experiment was old, even being out of production and very
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hard to find online. It was also found in a garage where it was likely used frequently. That said, the consistent higher
displacement of the experimental results could attest to hysteresis. Since the ruler was used frequently, it likely was
slightly bend at zero load, so the experimental 0 load did not produce 0 displacement. Considering the data in Table 2, it
is likely that the actual displacement at zero load was around .7 cm.

Table 2 Difference Between Experimental and Analytical Results in cm

An interesting observation of the analytical displacements is that all three methods predict an initial, non-zero
displacement within .01 cm. As the load increases, they diverge, following a slightly different slope.

The Beam Bending and FEA analysis produce consistent results, both quite close to each other, following a straight
slope. However, SolidWorks tends to break down around a 3.5 N load. This correlates with an error message that
SolidWorks displayed when loads past 3.5 N were applied. SolidWorks uses linear theory, which assumes small
displacements compared to the length of the beam [2]. The final experimental deformation was 10.6 cm, with a beam
length of 30.3 cm. With a 1:3 displacement to length ratio, this falls into a ’large displacement’ range. Thus, once the
displacement got large enough, the accuracy of the results tend to break down. This explains the large breakdown in
results in the larger loading section.

In addition, Euler-Bernoulli assumes small deformations as well. However, a breakdown of results does not occur.
As shown in Table 2, the difference between this method and experimental data is larger than the other two methods, but
still did not have a significant difference. It also predicted the closest final displacement for the largest load.
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Fig. 5 Force vs Displacement for the Four Methods with Adjusted Experimental Data

An explanation as to why Euler-Bernoulli did not result in skewed data, but SolidWorks did, is likely hysteresis. As
mentioned before, an inaccurate zero-force displacement of the ruler most likely screwed the displacement results. Thus,
assuming an average difference in data for the first few loadings using Table 2, it can be assumed that the ruler has a .7
cm displacement at zero-loading. Thus, adjusting the data to reflect this theory by creating Figure 5, the breakdown of
calculated theories is more easily visualized. It also reflects that SolidWorks is a more accurate model.

VII. Conclusion
In conclusion, this beam-bending experiment compared experimental results with three different analytical results.

It was found that the experimental deformation were slightly larger than all three analytical deformations. It can
be concluded that this is due to hysteresis. It was also found that analytical solutions broke down after around 3.5
Newtons of force. This is due to the large displacements that the beam underwent during experimentation. The final
deformation was one-third of the beam length. This is due to the assumption that beams under analysis of these methods
are undergoing small deformations compared to the length. However, the deformations were similar to that of the
experiment. Adjusting the data to adhere to the assumption that the beam had deformation when unloaded, the new data
shows that SolidWorks is the most accurate simulation. The new data also showed an accurate representation of how
Euler-Bernoulli breaks down at large deformations.
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VIII. Appendix
Raw Data:

Fig. 6 Raw Data

MATLAB Code for FEA:
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