HONORS PROJECT: EARTHQUAKE INDUCED VIBRATIONS

MATH $251-FALL\ 2020$

For the study of earthquake induced vibrations on multistory buildings, let us assume that the free transverse oscillations satisfy a system of second order differential equations of the form

$$m\mathbf{X}'' = kA\mathbf{X},$$

where A is an $n \times n$ -matrix (for n floors), m is the mass of each floor, k denotes the stiffness of the columns supporting the floor, and **X** is the vector $(x_1(t), \ldots, x_n(t))$ describing the deformation of the columns.

On the *i*-th floor $(i \neq 1, n)$ the acting forces are

$$k(x_i - x_{i-1}) - k(x_{i+1} - x_i) = k(-x_{i-1} + 2x_i - x_{i+1})$$

giving rise to the differential equation

$$mx_i'' = k(x_{i-1} - 2x_i + x_{i+1})$$

In the first and last floors the equations are $mx_1'' = k(-2x_1 + x_2)$ and $mx_n'' = k(x_n - x_{n-1})$, respectively. For a five-story building the matrix A from (*) becomes

$$A = \begin{pmatrix} -2 & 1 & 0 & 0 & 0\\ 1 & -2 & 1 & 0 & 0\\ 0 & 1 & -2 & 1 & 0\\ 0 & 0 & 1 & -2 & 1\\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$

- 1. Find the eigenvalues of A. To do this, find the characteristic polynomial $\varphi(\mu) = \det(A \mu I)$ with help of the recursive formula from part 1 and use Newton's method to find its roots.
- 2. Use sage or python to find the eigenvectors of A.
- 3. Verify that if v is an eigenvector with eigenvalue λ , then for $\omega \in \mathbb{C}$ such that $\omega^2 = -\lambda \cdot k/m$ and for any constant α , the function

$$X(t) = \alpha \cos(\omega t)v$$

is a solution of (*).

- 4. Let m = 1250, k = 10000, and $\alpha = 0.075$. Take the eigenvalue of A with smallest absolute value, together with its eigenvector, and use them to get a solution vector $(x_1(t), \ldots, x_5(t))$ for (*).
- 5. Plot the parametric curves $x_k(t) + k$ (k = 1, ..., 5) in one graph using different colors. What do these curves describe?